На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Славянская доктрина

6 533 подписчика

Свежие комментарии

  • Юрий Ильинов
    Мелания будет довольна. Трамп на глупой Ляйен прилично заработал.О пикантных надру...
  • Геннадий Свешников
    Давай ,давай Дон Кихот немецкой кобыле под хвост,а Мелания тебе кольчугу с деревянным копьём преподнесёт для раздора.О пикантных надру...
  • Юрий Ильинов
    Неоколониализм 2.0: Трамп мечтает перекроить весь мир   США пытаются сохранить гегемонию, маскируясь под сторонников ...О пикантных надру...

Как ученый предложил новые подходы к устранению остаточных колебаний космических конструкций

www.techinsider

 

Как ученый предложил новые подходы к устранению остаточных колебаний космических конструкций

Доцент кафедры «Проектирование и прочность авиационно-ракетных и космических изделий» МАИ и старший научный сотрудник Института прикладной механики Российской академии наук (ИПРИМ РАН) Сергей Русских работает над докторской диссертацией, где предлагает инновационные решения важных фундаментально-прикладных задач в области линейной и нелинейной механики управляемых космических конструкций.

Одна из прикладных задач, над которыми работает ученый, – терминальное управление механическими упругими системами. Речь о перемещении системы из одной точки пространства в другую за заданное время. При движении возникают достаточно сильные колебания, которые могут привести к поломке техники.

Сергей задался вопросом найти более эффективные способы решения проблемы остаточного колебания через физическое воздействие. Предложенные им методы уникальны тем, что позволяют получать простые управляющие импульсы, удобные для практической реализации, и управлять системами с переменными параметрами и нелинейными нестационарными колебаниями.

При этом решение универсально: его можно использовать как в космическом, так и земном или безвоздушном пространстве. Оно применимо к различным техническим приложениям (автоматизированные операции сборки, краны, подъёмно-транспортные устройства, быстродействующие роботы-манипуляторы и прочее).

Главная задача управления — подбор управляющего импульса. Ранее в работах известных учёных в области робототехники и космических систем предлагались подходы, основанные на разложении импульса по собственным частотам колебаний. Импульсы при этом получались высокочастотными и не удобными для практического применения.

В работе Сергея для различных систем предлагается несколько подходов.

Для линейных систем с постоянными параметрами используется разложение нестационарных движений по собственным формам колебаний (так называемое решение в нормальных координатах), полученные уравнения решаются аналитически точно. Управляющее воздействие ищется при этом в виде конечного ряда простых с точки зрения реализации финитных функций времени. Также для подобных систем, совершающих многократно однотипные операции, устранение колебаний в конце каждой операции с помощью одной «простой» заданной управляющей функции осуществляется за счёт «настройки» нескольких низших собственных частот колебаний системы на эту функцию путём варьирования параметров системы.

Для нелинейных систем или систем с переменными параметрами ученый МАИ впервые предложил подход, основанный на разложении обобщённых координат системы по заданным базисным функциям времени с неизвестными коэффициентами, которые определяются по методу Бубнова-Галёркина во временной области. Этот метод позволяет свести решение дифференциального уравнения к решению более простой математической проблемы. Управляющая функция на интервале управления при этом ищется в виде конечного ряда по синусам. Все обобщённые координаты необходимо разложить по известным заранее функциям времени с неизвестными коэффициентами. Перемещение раскладывается аналогично. Получается нелинейное алгебраическое уравнение, решив которое мы получим коэффициенты, которые определяют углы поворота и параметры управляющего воздействия. Благодаря этому методу будет происходить гашение колебания не только с точки зрения перемещения, но и скорости.

«Эту фундаментальную работу отличает её практикоориентированность. Это оригинальные и новые методы, которые достаточно просты, чтобы было легко реализовать их на практике», – отмечает учёный.

К разработке уже проявили интерес предприятия, которые занимаются вопросами производства и эксплуатации соответствующей техники. 

Сергей Русских
Сергей Русских
ß

«Бион»: советский биологический спутник

В конце октября ежегодно отмечается годовщина запуска первого из специализированных космических аппаратов серии «Бион» для проведения биологических исследований. «Роскосмос» вспоминает об этом событии.
Тим Скоренко

Итак, 31 октября 1973 года с космодрома Плесецк ракетой-носителем «Союз-У» был запущен первый из специализированных космических аппаратов серии «Бион» для проведения биологических исследований — «Космос-605». В состав «экипажа» первого спутника входили крысы, черепахи, растения, насекомые и микроорганизмы.

22 ноября 1973 года первый биоспутник штатно совершил посадку в запланированном месте в Казахстане, пробыв на орбите 21 сутки. В ходе реализации программы исследований впервые была доказана возможность электростатической защиты организмов в радиационных поясах Земли.

Космический аппарат был оснащен системой жизнеобеспечения с ресурсом в 30 дней. Общая масса аппарата составила 6 тонн, а спускаемого модуля — 358 килограмм.

Созданию программы «Бион» предшествовала необходимость изучения воздействия факторов космического полета, в основном невесомости, на структуру и функции различных тканей, органов и физиологических систем организма. Институт медико-биологических проблем РАН взял на себя ответственность за разработку и реализацию данных научно-исследовательских программ. В создании бортовой научной аппаратуры приняли участие десятки отечественных учреждений. Разработчик космических кораблей «Бион» — ФГУП ГНПРКЦ «ЦСКБ-Прогресс» (сейчас — АО «РКЦ "Прогресс").

Полученные результаты позволили более глубоко понять закономерности структурно-функциональных реакций живых систем на условия космического полета и эффективно используются для реализации глобальной программы освоения человечеством космического пространства.

В рамках программы «Бион» проводились комплексные физиологические, морфологические, биохимические, генетические исследования на животных и растительных организмах в полетах биоспутников, специально разработанных для проведения биологических исследований.

С 1973 по 1996 год было запущено в космос 11 биоспутников этой серии. Длительность полетов составляла от 5 до 22,5 суток. В этом проекте также принимали участие ученые из Болгарии, Венгрии, Германии, Канады, Польши, Румынии, США, Франции, Чехословакии, Китая, Нидерландов. В 2013 году программа получила развитие. С космодрома БАЙКОНУР был запущен космический корабль «Бион-М» №1, который провел на орбите Земли месяц. В планах Роскосмоса и ИМБП РАН осуществить запуски второго и третьего космического корабля новой серии для биологических исследований.

ß

Что произойдет с телом мертвого космонавта, если оставить его в космосе

На Хэллоуин принято рассказывать страшные истории. Вот вам тема для обсуждения на вечеринке 31 октября: космос, труп. Что будет с телом в условиях космоса?
Издательство МИФ
Что произойдет с телом мертвого космонавта, если оставить его в космосе

Нашли ответ на этот неожиданный вопрос в книге издательства МИФ «Съест ли меня моя кошка?». Автор — владелица похоронного бюро Кейтлин Даути. В книге она отвечает на животрепещущие вопросы о смерти и делает это откровенно, по-научному точно и с юмором. Смотрите сами. 

Трагедии во время покорения космоса 

Как и бескрайние просторы Галактики, судьба тела космонавта — неизведанная территория. Пока что ни один человек не умер в космосе по естественной причине. На сегодня погибли восемнадцать космонавтов, и все в результате настоящих космических катастроф: 

  • космический шаттл «Колумбия» (семь смертей; летательный аппарат развалился на части из-за повреждения конструкции), 
  • космический шаттл «Челленджер» (семь смертей; корабль разрушился при запуске), «Союз-11» (три смерти — единственные технически произошедшие в космосе; во время спуска преждевременно открылся вентиляционный клапан), 
  • «Союз-1» (одна смерть; при приземлении отказала парашютная система). 

Все эти события — крупномасштабные трагедии, после которых тела погибших были найдены на Земле в разной степени сохранности. Но мы не знаем, что будет, если космонавта настигнет внезапный сердечный приступ, или произойдет несчастный случай при выходе в открытый космос, или он подавится лиофилизированным (лиофилизированная пища — еда, высушенная при помощи заморозки) мороженым по пути на Марс. «Эм-м-м, Хьюстон, переправим его в подсобку или...»

Смерть в условиях отсутствия гравитации и атмосферного давления

Прежде чем порассуждать о том, как следовало бы поступить с космическим трупом, давайте подумаем, что могло бы произойти, если бы смерть наступила в месте без гравитации и атмосферного давления.

Рассмотрим гипотетическую ситуацию. Космонавт — назовем ее Лизой — находится снаружи космической станции и возится с каким-то рутинным ремонтом. (А космонавты вообще возятся с чем-то? Полагаю, все их занятия имеют определенную высокотехнологичную цель. Но выходят ли они когда-нибудь в открытый космос, просто чтобы проверить, все ли в порядке вокруг старой доброй станции?) Внезапно крохотный метеорит задевает пухлый белый скафандр Лизы и оставляет в нем приличных размеров дыру.

Хотя вы и могли увидеть подобное или прочесть о таком в научной фантастике, глаза Лизы не начнут выпирать из черепа до тех пор, пока ее не разорвет и от тела не останутся лишь брызги крови и ледышки. Ничего настолько драматичного не произойдет. Но Лизе нужно быстро среагировать, так как она потеряет сознание в течение девяти — одиннадцати секунд после повреждения скафандра. Это необычайно, до жути, точный промежуток времени. Давайте округлим его до десяти секунд. У нашей героини есть десять секунд, чтобы вернуться в герметичную среду. Но такая внезапная разгерметизация, вероятно, повергнет ее в шок. Смерть настигнет несчастную женщину прежде, чем она осознает происходящее.

Большинство состояний, которые могут убить Лизу, вызывает нехватка воздушного давления в космосе. Человеческое тело привыкло функционировать под давлением атмосферы Земли, которая все время окутывает нас, словно антистрессовое одеяло размером с планету. С момента, как давление исчезнет, газы внутри тела космонавта начнут расширяться, а жидкости — переходить в газообразное состояние. Вода в мышцах Лизы превратится в пар, который будет собираться под кожей, раздувая участки тела и увеличивая их вдвое. Это приведет к причудливой ситуации, похожей на ту, что произошла с Виолеттой Борегард (героиня сказочной повести Роальда Даля «Чарли и шоколадная фабрика», которая съела экспериментальную жвачку-обед и распухла, став похожей на огромную ягоду черники. Прим. пер.), но на самом деле не станет основной проблемой с точки зрения выживания. Из-за нехватки давления азот в крови Лизы образует пузырьки газа, причинив ей сильнейшую боль, — такую испытывают глубоководные ныряльщики при кессонной болезни. 

Когда спустя девять — одиннадцать секунд Лиза потеряет сознание, это принесет ей милосердное облегчение. Она продолжит парить и надуваться, даже не подозревая о трансформациях собственного тела.

Как только будет преодолена отметка в полторы минуты, пульс Лизы и ее артериальное давление резко упадут (настолько, что кровь может начать закипать). Огромная разница в давлении внутри и снаружи ее легких приведет к их разрыву и кровотечению. Без немедленной помощи Лиза задохнется, и у нас на руках окажется космический труп. Помните: это лишь предположение о том, что произойдет. Немногочисленная информация, которой мы обладаем, получена из исследований, проведенных в барокамерах на несчастных людях и не менее несчастных животных.

Экипаж затаскивает Лизу внутрь станции, но спасать ее уже поздно. Покойся с миром, Лиза. 

Что делать с космическим трупом?

Космические специалисты, например работающие в НАСА, уже какое-то время размышляют о неизбежном, однако не обсуждают это публично (почему вы прячете свой протокол о космических трупах, а, НАСА?). Так что позвольте мне задать вопрос вам: должно ли тело Лизы вернуться на Землю? В зависимости от вашего решения может произойти следующее.

«Да, верните тело Лизы на Землю»

Разложение замедляется при низких температурах, так что если тело Лизы возвращается на Землю (и экипаж не хочет, чтобы его выделения попадали в жилую зону корабля), то его следует хранить максимально охлажденным. 

На Международной космической станции космонавты убирают мусор и пищевые отходы в самую холодную часть комплекса. Это тормозит размножение бактерий, вызывающих разложение, замедляет гниение пищи и помогает избежать появления неприятных запахов. Так что, возможно, именно здесь Лиза пробудет до тех пор, пока шаттл не вернется домой. 

Держать тело павшего космического героя вместе с мусором не лучший пиар-ход, но пространство станции ограничено, а зона сбора мусора уже оснащена системой охлаждения, поэтому логично положить его именно туда.

«Да, тело Лизы должно вернуться на Землю, но не сразу»

Что если Лиза умрет от сердечного приступа во время долгого путешествия на Марс? В 2005 году НАСА вместе с маленькой шведской компанией Promessa разработало прототип системы обработки и содержания космических трупов. Он получил название Body Back («Тело домой» (англ.)). 

Если бы экипаж Лизы имел на борту систему Body Back, то вот что они предприняли бы. Тело Лизы поместили бы в герметичный мешок, сделанный из водонепроницаемого материала, и втолкнули бы в шлюзовый модуль шаттла. В шлюзовом модуле при космической температуре (–270 °C) тело Лизы замерзло бы. 

Спустя примерно час роботизированная рука вернула бы тело внутрь шаттла и в течение пятнадцати минут вибрировала бы, разбивая замороженную Лизу на кусочки. Эти кусочки были бы обезвожены, и от Лизы в мешке осталось бы чуть больше двадцати килограммов пыли. Теоретически можно хранить Лизу в виде порошка в течение многих лет, прежде чем вернуть ее на Землю семье — так же как вернули бы после кремации очень тяжелую урну с прахом.

«Нет, Лиза должна остаться в космосе»

А кто сказал, что тело Лизы вообще нужно возвращать на Землю? Люди платят по 12 тысяч долларов и больше за то, чтобы крошечные, символические порции их праха или ДНК были запущены на земную орбиту, поверхность Луны или в открытый космос. Как вы думаете, насколько воодушевились бы космические фанатики, получив возможность выпустить в открытый космос собственный труп целиком?

В конце концов, похороны в море, когда тела предавали волнам, выбрасывая за борт, всегда считались уважительным способом проститься с моряками и исследователями. Эта практика продолжается по сей день, несмотря на достижения в области бортового охлаждения и консервации. Именно поэтому, хотя технологии и позволяют нам создать роботизированную руку, умеющую разбивать и лиофилизировать космические трупы, вероятно, мы могли бы использовать более простой вариант: завернуть тело Лизы в мешок, пронести его наружу мимо солнечной батареи и отпустить бороздить космическое пространство?

Космос кажется огромным и неуправляемым. Нам нравится представлять, что Лиза будет вечно дрейфовать в пустоте (как Джордж Клуни в фильме «Гравитация»), но, скорее всего, ее тело будет двигаться по одной орбите с шаттлом. И станет, как это ни парадоксально, разновидностью космического мусора. 

Организация Объединенных Наций сформулировала ряд правил, запрещающих загрязнять космическое пространство. Но я сомневаюсь, что кто-то применил бы эти правила к Лизе. Повторюсь, никто не захочет причислить нашу доблестную Лизу к мусору!

Опыт Эвереста

Человечество прежде уже сталкивалось с проблемой, о которой мы говорили выше, и справлялось с ней довольно суровым образом. Существует всего несколько альпинистских маршрутов, по которым можно забраться на вершину горы Эверест высотой почти 8849 метров.

Если кто-то умрет на такой высоте (а это произошло с почти тремя сотнями человек), выжившие не смогут доставить тело вниз для похорон или кремации, так как это очень опасно. Сегодня тропы для восхождения усыпаны трупами, и каждый год новым альпинистам приходится переступать через оранжевые пуховики и окоченевшие лица павших товарищей. То же самое могло бы произойти в космосе: шаттлы пролетали бы мимо орбитальных трупов при каждом путешествии на Марс. «О боже, опять эта Лиза».

Бесплатная кремация или новая жизнь?

Возможно, гравитация планеты в конце концов притянула бы тело Лизы. В таком случае оно подверглось бы бесплатной кремации в слоях атмосферы. Сопротивление газовой среды привело бы к перегреву тканей, и труп сгорел бы. 

Существует ничтожнейшая из ничтожных вероятность того, что, если бы тело Лизы отправили в космос на маленьком самоходном космическом корабле (например, в спасательной капсуле), который затем вылетел бы за пределы Солнечной системы, долетел сквозь пустынные просторы до какой-нибудь экзопланеты, выдержал прохождение через местную атмосферу и раскололся при ударе, микробы и споры бактерий из организма Лизы сумели бы создать на новой планете жизнь. Что ж, повезло бы ей тогда! 

А откуда нам знать, что жизнь на Земле не зародилась благодаря такой вот Лизе-инопланетянке? Возможно, «первичный бульон» (термин, введенный советским биологом А.И. Опариным для обозначения среды, в которой, по его теории, под действием разрядов молний, ультрафиолета и вулканических извержений впервые синтезировались сложные органические молекулы. Прим. пер.), из которого возникли первые живые организмы, — это просто результат разложения чьего-то трупа. В общем, спасибо Лизе.

Из книги «Съест ли меня моя кошка?»

Иллюстрация из книги
Иллюстрация из книги «Съест ли меня моя кошка?»
наверх